Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(18)2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579752

RESUMO

Objective. In current dosimetry protocols, the estimated uncertainty of the measured absorbed dose to waterDwin carbon-ion beams is approximately 3%. This large uncertainty is mainly contributed by the standard uncertainty of the beam quality correction factorkQ. In this study, thekQvalues in four cylindrical chambers and two plane-parallel chambers were calculated using Monte Carlo (MC) simulations in the plateau region. The chamber-specific perturbation correction factorPof each chamber was also determined through MC simulations.Approach.kQfor each chamber was calculated using MC code Geant4. The simulatedkQratios in subjected chambers and reference chambers were validated through comparisons against our measured values. In the measurements in Heavy-Ion Medical Accelerator in Chiba,kQratios were obtained fromDwvalues of60Co, 290- and 400 MeV u-1carbon-ion beams that were measured with the subjected ionization chamber and the reference chamber. In the simulations,fQ(the product of the water-to-air stopping power ratio andP) was acquired fromDwand the absorbed dose to air calculated in the sensitive volume of each chamber.kQvalues were then calculated from the simulatedfQand the literature-extractedWairand compared with previous publications.Main results. The calculatedkQratios in the subjected chambers to the reference chamber agreed well with the measuredkQratios. ThekQuncertainty was reduced from the current recommendation of approximately 3% to 1.7%. ThePvalues were close to unity in the cylindrical chambers and nearly 1% above unity in the plane-parallel chambers.Significance. ThekQvalues of carbon-ion beams were accurately calculated in MC simulations and thekQratios were validated through ionization chamber measurements. The results indicate a need for updating the current recommendations, which assume a constantPof unity in carbon-ion beams, to recommendations that consider chamber-induced differences.


Assuntos
Fazendeiros , Radiometria , Humanos , Radiometria/métodos , Íons , Carbono , Método de Monte Carlo
2.
J Appl Clin Med Phys ; 23(3): e13519, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35001518

RESUMO

PURPOSE: The dual-layer multi-leaf collimator (MLC) in Halcyon involves further complexities in the dose calculation process, because the leaf-tip transmission varies according to the leaf trailing pattern. For the volumetric modulated arc therapy (VMAT) treatment, the prescribed dose for the target volume can be sensitive to the leaf-tip transmission change. This report evaluates the dosimetric consequence due to the uncertainty of the dual-layer MLC model in Eclipse through the dose verifications for clinical VMAT. Additionally, the Halcyon leaf-tip model is empirically adjusted for the VMAT dose calculation with the Acuros XB. MATERIALS AND METHODS: For this evaluation, an in-house program that analyzes the leaf position in each layer was developed. Thirty-two clinical VMAT plans were edited into three leaf sequences: dual layer (original), proximal single layer, or distal single layer. All leaf sequences were verified using Delta4 according to the dose difference (DD) and the global gamma index (GI). To improve the VMAT dose calculation accuracy, the dosimetric leaf gap (DLG) was adjusted to minimize the DD in single-layer leaf sequences. RESULTS: The mean of DD were -1.35%, -1.20%, and -1.34% in the dual-layer, proximal single-layer, and distal single-layer leaf sequences, respectively. The changes in the mean of DD between leaf sequences were within 0.2%. However, the calculated doses differed from the measured doses by approximately 1% in all leaf sequences. The tuned DLG was increased by 0.8 mm from the original DLG in Eclipse. When the tuned DLG was used in the dose calculation, the mean of DD neared 0% and GI with a criterion of 2%/2 mm yielded a pass rate of more than 98%. CONCLUSION: No significant change was confirmed in the dose calculation accuracy between the leaf sequences. Therefore, it is suggested that the dosimetric consequence due to the leaf trailing was negligibly small in clinical VMAT plans. The DLG tuning for Halcyon can be useful for reducing the dose calculation uncertainties in Eclipse VMAT and required in the commissioning for Acuros XB.


Assuntos
Radioterapia de Intensidade Modulada , Algoritmos , Humanos , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
J Radiat Res ; 62(4): 726-734, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34036361

RESUMO

To understand the current state of flattening filter-free (FFF) beam implementation in C-arm linear accelerators (LINAC) in Japan, the quality assurance (QA)/quality control (QC) 2018-2019 Committee of the Japan Society of Medical Physics (JSMP) conducted a 37-question survey, designed to investigate facility information and specifications regarding FFF beam adoption and usage. The survey comprised six sections: facility information, devices, clinical usage, standard calibration protocols, modeling for treatment planning (TPS) systems and commissioning and QA/QC. A web-based questionnaire was developed. Responses were collected between 18 June and 18 September 2019. Of the 846 institutions implementing external radiotherapy, 323 replied. Of these institutions, 92 had adopted FFF beams and 66 had treated patients using them. FFF beams were used in stereotactic radiation therapy (SRT) for almost all disease sites, especially for the lungs using 6 MV and liver using 10 MV in 51 and 32 institutions, respectively. The number of institutions using FFF beams for treatment increased yearly, from eight before 2015 to 60 in 2018. Farmer-type ionization chambers were used as the standard calibration protocol in 66 (72%) institutions. In 73 (80%) institutions, the beam-quality conversion factor for FFF beams was calculated from TPR20,10, via the same protocol used for beams with flattening filter (WFF). Commissioning, periodic QA and patient-specific QA for FFF beams also followed the procedures used for WFF beams. FFF beams were primarily used in high-volume centers for SRT. In most institutions, measurement and QA was conducted via the procedures used for WFF beams.


Assuntos
Fótons , Inquéritos e Questionários , Calibragem , Relação Dose-Resposta à Radiação , Humanos , Japão , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador
4.
Med Phys ; 47(10): 5324-5332, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32786073

RESUMO

PURPOSE: Ionization chambers are widely used for dosimetry with megavoltage photon beams. Several properties of ionization chambers, including the cable effect, polarity effect, and ion recombination loss, are described in standard dosimetry protocols. The cable effect is categorized as the leakage current and Compton current, and careful consideration of these factors has been described not only in reference dosimetry but also in large fields. However, the mechanism of Compton current in the cable has not been investigated thoroughly. The cable effect of ionization chambers in 6 MV X-ray beam was evaluated by measurement, and the mechanism of Compton current was investigated by Monte Carlo simulation. MATERIALS AND METHODS: Four PTW ionization chambers (TM30013, TM31010, TM31014, and TM31016) with the same type of mounted cable, but different ionization volumes, were used to measure output factor (OPF) and cable effect measurement. The OPF was measured to observe any variation resulting from the cable effect. The cable effect was evaluated separately for the leakage current and Compton current, and its charge per absorbed dose to water per cable length was estimated by a newly proposed method. The behavior of electrons and positrons in the core wire was analyzed and the Compton current for the photon beam was estimated by Monte Carlo simulation. RESULTS: In OPF measurement, the difference in the electrometer readings by polarity became obvious for the mini- or microchamber and its difference tended to be larger for a chamber with a smaller ionization volume. For the cable effect measurement, it was determined that the contribution of the leakage current to the cable effect was ignorable, while the Compton current was dominant. The charge due to the Compton current per absorbed dose to water per cable length was estimated to be 0.36 ± 0.03 pC Gy-1  cm-1 for PTW ionization chambers. As a result, the contribution of the Compton current to the electrometer readings was estimated to be 0.002% cm-1 for the Farmer-type, 0.011% cm-1 for the scanning, and 0.088% cm-1 for microchambers, respectively. By the simulation, it was determined that the Compton current for MV x-ray could be explained by not only recoil electrons due to Compton scattering but also positron due to pair production. The Compton current estimated by the difference in outflowing and inflowing charge was 0.45 pC Gy-1  cm-1 and was comparable with the measured value. CONCLUSION: The cable effect, which includes the leakage current and Compton current, was quantitatively estimated for several chambers from measurements, and the mechanism of Compton current was investigated by Monte Carlo simulation. It was determined that the Compton current is a dominant component of the cable effect and its charge is consistently positive and nearly the same, irrespective of the ionization chamber volume. The contribution of Compton current to the electrometer readings was estimated for chambers. The mechanism of Compton current was analyzed and it was confirmed that the Compton current can be estimated from the difference in outflowing and inflowing charge to and from the core wire.


Assuntos
Fótons , Radiometria , Simulação por Computador , Elétrons , Método de Monte Carlo
5.
Med Phys ; 46(11): 5185-5194, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31386762

RESUMO

PURPOSE: The ICRU has published new recommendations for ionizing radiation dosimetry. In this work, the effect of recommendations on the water-to-air and graphite-to-air restricted mass electronic stopping power ratios (sw, air and sg, air ) and the individual perturbation correction factors Pi was calculated. The effect on the beam quality conversion factors kQ for reference dosimetry of high-energy photon beams was estimated for all ionization chambers listed in the Addendum to AAPM's TG-51 protocol. METHODS: The sw, air , sg, air , individual Pi, and kQ were calculated using EGSnrc Monte Carlo code system and key data of both ICRU report 37 and ICRU report 90. First, the Pi and kQ were calculated using precise models of eight ionization chambers: NE2571 (Nuclear Enterprise), 30013, 31010, 31021 (PTW), Exradin A12, A12S, A1SL (Standard imaging), and FC-65P (IBA). In this simulation, the radiation sources were one 60 Co beam and ten photon beams with nominal energy between 4 MV and 25 MV. Then, the change in kQ for ionization chambers listed in the Addendum to AAPM's TG-51 protocol was calculated by changing the specification of the simple-model of ionization chamber. The simple-models were made with only cylindrical component modules. In this simulation, the radiation sources of 60 Co beam and 24 MV photon beam were used. RESULTS: The significant changes (p < 0.05) were observed for sw, air , sg, air , the wall correction factor Pwall , and the waterproofing sleeve correction factor Psleeve . The decrease in sw, air varied from -0.57% for a 60 Co beam to -0.36% for the highest beam quality. The decrease in sg, air varied from -0.72% to -1.12% in the same range. The changes in Pwall and Psleeve were up to 0.41% and 0.14% and those maximum changes were observed for the 60 Co beam. All changes in the central electrode correction factor Pcel , the stem correction factor Pstem , and the replacement correction factor Prepl were from -0.02% to 0.12%. Those changes were statistically insignificant (p = 0.07 or more) and were independent of photon energy. The change in kQ was mainly characterized by the change in sw, air , Pwall , and Psleeve . The relationship between the change in kQ and the beam quality index was linear approximately. The changes in kQ of the simple-models were agreed with those of the precise-models within 0.08%. CONCLUSION: The effects of ICRU-90 recommendations on kQ for the ionization chambers listed in the Addendum to AAPM's TG-51 protocol were from -0.15% to 0.30%. To remove the known systematic effect on the clinical reference dosimetry, the kQ based on ICRU-37 should be updated to the kQ based on ICRU-90.


Assuntos
Agências Internacionais , Método de Monte Carlo , Radiometria/instrumentação , Relatório de Pesquisa , Sociedades Médicas , Radioisótopos de Cobalto , Guias como Assunto , Fótons
6.
J Appl Clin Med Phys ; 20(8): 98-104, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31355984

RESUMO

Respiratory-gated volumetric modulated arc therapy (gated VMAT) involves further complexities to the dose delivery process because the gantry rotation must repeatedly stop and restart according to the gating signals. In previous studies, the gantry rotation performances were evaluated by the difference between the plan and the machine log. However, several reports pointed out that log analysis does not sufficiently replicate the machine performance. In this report, a measurement-based quality assurance of the relation between the gantry angle and gate-on or gate-off using triggered kilovoltage imaging and a cylinder phantom with 16 ball bearings is proposed. For the analysis, an in-house program that estimates and corrects the phantom offset was developed. The gantry angle in static and gated arc delivery was compared between the machine log and the proposed method. The gantry was set every 5 deg through its full motion range in static delivery, and rotated at three speeds (2, 4 and 6 deg s-1 ) with different gating intervals (1.5 or 3.0 s) in gated arc delivery. The mean and standard deviation of the angular differences between the log and the proposed method was -0.05 deg ± 0.12 deg in static delivery. The mean of the angular difference was within ±0.10 deg and the largest difference was 0.41 deg in gated arc delivery. The log records the output of the encoder so that miscalibration and mechanical sagging will be disregarded. However, the proposed method will help the users to detect the mechanical issues due to the repeated gantry stops and restarts in gated VMAT.


Assuntos
Neoplasias/radioterapia , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Técnicas de Imagem de Sincronização Respiratória , Humanos , Processamento de Imagem Assistida por Computador/métodos , Controle de Qualidade , Dosagem Radioterapêutica , Respiração , Raios X
7.
Med Phys ; 45(1): 382-390, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29131409

RESUMO

PURPOSE: We evaluated the energy responses of a radiophotoluminescent glass dosimeter (RPLD) to variations in small-field and intensity-modulated radiation therapy (IMRT) conditions using experimental measurements and Monte Carlo simulation. METHODS: Several sizes of the jaw and multileaf collimator fields and various plan-class IMRT-beam measurements were performed using the RPLD and an ionization chamber. The field-size correction factor for the RPLD was determined for 6- and 10-MV x rays. This correction factor, together with the perturbation factor, was also calculated using Monte Carlo simulation with the EGSnrc/egs_chamber user code. In addition, to evaluate the response of the RPLD to clinical-class-specific reference fields, the field-size correction factor for the clinical IMRT plan was measured. RESULTS: The calculated field-size correction factor ranged from 1.007 to 0.981 (for 6-MV x rays) and from 1.012 to 0.990 (for 10-MV x rays) as the jaw-field size ranged from 1 × 1 cm2 to 20 × 20 cm2 . The atomic composition perturbation factor for these jaw fields decreased by 3.2% and 1.9% for the 6- and 10-MV fields, respectively. The density perturbation factor was unity for field sizes ranging from 3 × 3 cm2 to 20 × 20 cm2 , whereas that for field sizes ranging from 3 × 3 cm2 to 1 × 1 cm2 decreased by 3.2% (for 6-MV x rays) and 4.3% (for 10-MV x rays). The volume-averaging factor rapidly increased for field sizes below 1.6 × 1.6 cm2 . The results for the MLC fields were similar to those for the jaw fields. For plan-class IMRT beams, the field-size correction and perturbation factors were almost unity. The difference between the doses measured using the RPLD and ionization chamber was within 1.2% for the clinical IMRT plan at the planning-target volume (PTV) region. CONCLUSIONS: For small fields of size 1.6 × 1.6 cm2 or less, it was clarified that the volume averaging and density perturbation were the dominant effects responsible for the variation in the RPLD response. Moreover, perturbation correction is required when measuring a field size 1.0 × 1.0 cm2 or less. Under the IMRT conditions, the difference in the responses of the RPLD between the reference conditions and the PTV region calculated by Monte Carlo simulation did not exceed 0.8%. These results indicate that it is feasible to measure IMRT dosage using an RPLD at the PTV region.


Assuntos
Dosímetros de Radiação , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Simulação por Computador , Vidro , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Radiometria/instrumentação , Radioterapia de Intensidade Modulada/instrumentação
8.
Phys Med Biol ; 62(23): 8869-8881, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-28980978

RESUMO

To measure the absorbed dose to water D w in proton beams using a radiophotoluminescent glass dosimeter (RGD), a method with the correction for the change of the mass stopping power ratio (SPR) and the linear energy transfer (LET) dependence of radiophotoluminescent efficiency [Formula: see text] is proposed. The calibration coefficient in terms of D w for RGDs (GD-302M, Asahi Techno Glass) was obtained using a 60Co γ-ray. The SPR of water to the RGD was calculated by Monte Carlo simulation, and [Formula: see text] was investigated experimentally using a 70 MeV proton beam. For clinical usage, the residual range R res was used as a quality index to determine the correction factor for the beam quality [Formula: see text] and the LET quenching effect of the RGD [Formula: see text]. The proposed method was evaluated by measuring D w at different depths in a 200 MeV proton beam. For both non-modulated and modulated proton beams, [Formula: see text] decreases rapidly where R res is less than 4 cm. The difference in [Formula: see text] between a non-modulated and a modulated proton beam is less than 0.5% for the R res range from 0 cm to 22 cm. [Formula: see text] decreases rapidly at a LET range from 1 to 2 keV µm-1. In the evaluation experiments, D w using RGDs, [Formula: see text] showed good agreement with that obtained using an ionization chamber and the relative difference was within 3% where R res was larger than 1 cm. The uncertainty budget for [Formula: see text] in a proton beam was estimated to investigate the potential of RGD postal dosimetry in proton therapy. These results demonstrate the feasibility of RGD dosimetry in a therapeutic proton beam and the general versatility of the proposed method. In conclusion, the proposed methodology for RGDs in proton dosimetry is applicable where R res > 1 cm and the RGD is feasible as a postal audit dosimeter for proton therapy.


Assuntos
Vidro , Transferência Linear de Energia , Luminescência , Terapia com Prótons , Radiometria/métodos , Calibragem , Humanos , Método de Monte Carlo
10.
Igaku Butsuri ; 37(1): 25-33, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28924095

RESUMO

In Japan and North America, different dosimetry protocols have been implemented to determine the absorbed dose to water: JSMP Standard Dosimetry 12 and AAPM TG-51 addendum. In this study, Japanese and Canadian reference dosimetries for high energy photon beams were compared theoretically, and then they were verified experimentally. We estimated the theoretical differences of the ion recombination correction factors, the leakage correction factors, the radial dose distribution correction factors, the calibration factors, the beam quality correction factors and the absorbed dose to water. When an influence of the radial dose distribution is negligible, the ratios of Canadian to Japanese absorbed dose in reference dosimetries ranged from 0.995 to 1.007 for all the reference-class-Farmer-type ionization chambers. This discrepancy was mainly caused by the wall correction factor included in the beam quality correction factor. Subsequently, to verify the theoretical approaches, we calibrated the same ionization chamber in 60Co gamma ray of Japanese primary and secondary standard dosimetry laboratories (PSDL and SSDL) and measured the absorbed dose of a clinical linear accelerator. It followed that the ratios of Canadian to Japanese absorbed dose in reference dosimetries increased up to 1.015 for PTW 30013 reference-class-Farmer-type ionization chamber. This increase was mainly caused by a discrepancy in the calibration factors (ND,w) observed between Japanese PSDL and SSDL. In conclusion, in order to improve the international consistency of the absorbed dose to water determined by JSMP Standard Dosimetry 12, we should reevaluate the accuracy of the wall correction factors and implement a periodic comparative test of the ND,w between Japanese PSDL and SSDL.


Assuntos
Radiometria/normas , Canadá , Íons/química , Japão , Método de Monte Carlo , Fenilpropionatos , Radiometria/métodos
11.
Jpn J Radiol ; 35(7): 389-397, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28528467

RESUMO

PURPOSE: The JSMP01 dosimetry protocol had adopted the provisional 60Co calibration coefficient [Formula: see text], namely, the product of exposure calibration coefficient N C and conversion coefficient k D,X. After that, the absorbed dose to water D w standard was established, and the JSMP12 protocol adopted the [Formula: see text] calibration. In this study, the influence of the calibration shift on the measurement of D w among users was analyzed. MATERIALS AND METHODS: The intercomparison of the D w using an ionization chamber was annually performed by visiting related hospitals. Intercomparison results before and after the calibration shift were analyzed, the deviation of D w among users was re-evaluated, and the cause of deviation was estimated. RESULTS: As a result, the stability of LINAC, calibration of the thermometer and barometer, and collection method of ion recombination were confirmed. The statistical significance of standard deviation of D w was not observed, but that of difference of D w among users was observed between N C and [Formula: see text] calibration. CONCLUSION: Uncertainty due to chamber-to-chamber variation was reduced by the calibration shift, consequently reducing the uncertainty among users regarding D w. The result also pointed out uncertainty might be reduced by accurate and detailed instructions on the setup of an ionization chamber.


Assuntos
Doses de Radiação , Radiometria/métodos , Radioterapia de Alta Energia , Calibragem , Japão , Incerteza , Água
13.
Igaku Butsuri ; 36(2): 79-84, 2016.
Artigo em Japonês | MEDLINE | ID: mdl-28428458

RESUMO

Flattening filter-free (FFF) beams generated by linear accelerators have been widely adopted in many hospitals recently for radiation therapy. FFF technology can provide higher dose rates so that shortening of the treatment time and less intra-fraction motion error are expected.In Japan, the current way of determining absorbed dose to water for FFF beams is to follow the Standard Dosimetry 12 protocol which was developed for flattened beams. Since it has been reported that the flattened beams and FFF beams have different beam properties, it is necessary to evaluate the usefulness of Standard Dosimetry 12 protocol for FFF beam dosimetry.This report reviews physical and dosimetric properties of FFF beams especially in terms of the effect on absorbed dose to water dosimetry using an ionization chamber. From the review, it became evident that the absorbed dose to water is underestimated by volume averaging effect of the ionization chamber. On the other hand, the absorbed dose to water is overestimated by using the beam-quality specifier TPR20,10 to predict the restricted mass collision stopping power ratio for FFF beams. Therefore, an alternative method was proposed for absorbed dose to water dosimetry of FFF beams based on Standard Dosimetry 12.


Assuntos
Radiometria/métodos , Água , Dosagem Radioterapêutica
14.
Med Phys ; 41(11): 112104, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370655

RESUMO

PURPOSE: The purpose of this study was to obtain a set of correction factors of the radiophotoluminescent glass dosimeter (RGD) output for field size changes and wedge insertions. METHODS: Several linear accelerators were used for irradiation of the RGDs. The field sizes were changed from 5 × 5 cm to 25 × 25 cm for 4, 6, 10, and 15 MV x-ray beams. The wedge angles were 15°, 30°, 45°, and 60°. In addition to physical wedge irradiation, nonphysical (dynamic/virtual) wedge irradiations were performed. RESULTS: The obtained data were fitted with a single line for each energy, and correction factors were determined. Compared with ionization chamber outputs, the RGD outputs gradually increased with increasing field size, because of the higher RGD response to scattered low-energy photons. The output increase was about 1% per 10 cm increase in field size, with a slight difference dependent on the beam energy. For both physical and nonphysical wedged beam irradiation, there were no systematic trends in the RGD outputs, such as monotonic increase or decrease depending on the wedge angle change if the authors consider the uncertainty, which is approximately 0.6% for each set of measured points. Therefore, no correction factor was needed for all inserted wedges. Based on this work, postal dose audits using RGDs for the nonreference condition were initiated in 2010. The postal dose audit results between 2010 and 2012 were analyzed. The mean difference between the measured and stated doses was within 0.5% for all fields with field sizes between 5 × 5 cm and 25 × 25 cm and with wedge angles from 15° to 60°. The standard deviations (SDs) of the difference distribution were within the estimated uncertainty (1SD) except for the 25 × 25 cm field size data, which were not reliable because of poor statistics (n = 16). CONCLUSIONS: A set of RGD output correction factors was determined for field size changes and wedge insertions. The results obtained from recent postal dose audits were analyzed, and the mean differences between the measured and stated doses were within 0.5% for every field size and wedge angle. The SDs of the distribution were within the estimated uncertainty, except for one condition that was not reliable because of poor statistics.


Assuntos
Radiometria/instrumentação , Radiometria/métodos , Calibragem , Vidro , Luminescência , Aceleradores de Partículas , Imagens de Fantasmas , Fótons , Doses de Radiação , Reprodutibilidade dos Testes , Raios X
15.
Igaku Butsuri ; 33(4): 186-91, 2013.
Artigo em Japonês | MEDLINE | ID: mdl-24893494

RESUMO

This report describes the update of the beam quality conversion factor k(Q,Q0) of the standard dosimetry protocol in Japan. The k(Q,Q0) corrects for the difference between the response of an ionization chamber in the reference beam quality Q0 used for calibrating the chamber and in the actual user beam quality Q. All changes of k(Q,Q0) were caused by the perturbation correction factors which were recalculated by Monte Carlo simulation. With a calculation process, unsolved problems in this update are also discussed here.


Assuntos
Radiometria/métodos , Radiometria/normas , Carbono , Radioisótopos de Cobalto , Elétrons , Raios gama , Íons Pesados , Japão , Método de Monte Carlo , Fótons , Radioterapia/métodos , Dosagem Radioterapêutica/normas
16.
J Radiat Res ; 53(6): 999-1005, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22915779

RESUMO

When a brass compensator is set in a treatment beam, beam hardening may take place. This variation of the energy spectrum may affect the accuracy of dose calculation by a treatment planning system and the results of dose measurement of brass compensator intensity modulated radiation therapy (IMRT). In addition, when X-rays pass the compensator, scattered photons are generated within the compensator. Scattered photons may affect the monitor unit (MU) calculation. In this study, to evaluate the variation of dose distribution by the compensator, dose distribution was measured and energy spectrum was simulated using the Monte Carlo method. To investigate the influence of beam hardening for dose measurement using an ionization chamber, the beam quality correction factor was determined. Moreover, to clarify the effect of scattered photons generated within the compensator for the MU calculation, the head scatter factor was measured and energy spectrum analyses were performed. As a result, when X-rays passed the brass compensator, beam hardening occurred and dose distribution was varied. The variation of dose distribution and energy spectrum was larger with decreasing field size. This means that energy spectrum should be reproduced correctly to obtain high accuracy of dose calculation for the compensator IMRT. On the other hand, the influence of beam hardening on k(Q) was insignificant. Furthermore, scattered photons were generated within the compensator, and scattered photons affect the head scatter factor. These results show that scattered photons must be taken into account for MU calculation for brass compensator IMRT.


Assuntos
Cobre/efeitos da radiação , Filtração/instrumentação , Modelos Estatísticos , Radioterapia Conformacional/instrumentação , Zinco/efeitos da radiação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Método de Monte Carlo , Fótons/uso terapêutico , Espalhamento de Radiação
17.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 65(1): 41-9, 2009 Jan 20.
Artigo em Japonês | MEDLINE | ID: mdl-19212076

RESUMO

PURPOSE: In our institution a CT scanner was installed in the same room as the linear accelerator. In stereotactic body radiotherapy (SBRT) we confirmed the isocenter position by serial thin-slice and long-scan-time CT images before every treatment as well as in planning. In planning we constructed digitally reconstructed radiography (DRR) of both the anterior and lateral views. At the first treatment we also checked the isocenter with linacgraphy. Then we compared the isocenter positions obtained from the DRR and linacgraphy. MATERIALS AND METHODS: Between Feb. 2005 and Oct. 2006, we treated 75 lung and liver tumors with SBRT in this way. Based on bony structures, we measured the differences between in-isocenter positions for SI, LR, and AP directions between DRR and linacgraphy. RESULTS: The median (min-max) of the differences in-isocenter positions for SI, LR, and AP directions between DRR and linacgraphy were 0.0 mm (0-6.0), 0.0 mm (0-10.0), and 0.0 mm (0-10.0), respectively, as well as 3.2 mm (0-12.3) for 3-dimensional distance. In 28 tumors (37%) the differences exceeded 5 mm in three-dimensional distance. The frequency of differences exceeding 5 mm in upper lung lesions tended to be more than that in liver lesions, and that in left pulmonary lesions was significantly more than that in right ones. CONCLUSION: This result suggests that the relative position of the target volume to the bony structure differ in planning and in every treatment. It was recommended to verify isocenter accuracy in institutions where isocenter position is checked only by orthogonal linacgraphy in SBRT.


Assuntos
Radiocirurgia/métodos , Tomografia Computadorizada por Raios X , Humanos , Radiocirurgia/instrumentação
18.
Med Phys ; 35(10): 4591-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18975705

RESUMO

This article is intended to improve the certainty of the absorbed dose determination for reference dosimetry in CyberKnife beams. The CyberKnife beams do not satisfy some conditions of the standard reference dosimetry protocols because of its unique treatment head structure and beam collimating system. Under the present state of affairs, the reference dosimetry has not been performed under uniform conditions and the beam quality correction factor kQ for an ordinary 6 MV linear accelerator has been temporally substituted for the kQ of the CyberKnife in many sites. Therefore, the reference conditions and kQ as a function of the beam quality index in a new way are required. The dose flatness and the error of dosimeter reading caused by radiation fields and detector size were analyzed to determine the reference conditions. Owing to the absence of beam flattening filter, the dose flatness of the CyberKnife beam was inferior to that of an ordinary 6 MV linear accelerator. And if the absorbed dose is measured with an ionization chamber which has cavity length of 2.4, 1.0 and 0.7 cm in reference dosimetry, the dose at the beam axis for a field of 6.0 cm collimator was underestimated 1.5%, 0.4%, and 0.2% on a calculation. Therefore, the maximum field shaped with a 6.0 cm collimator and ionization chamber which has a cavity length of 1.0 cm or shorter were recommended as the conditions of reference dosimetry. Furthermore, to determine the kQ for the CyberKnife, the realistic energy spectrum of photons and electrons in water was simulated with the BEAMnrc. The absence of beam flattening filter also caused softer photon energy spectrum than that of an ordinary 6 MV linear accelerator. Consequently, the kQ for ionization chambers of a suitable size were determined and tabulated as a function of measurable beam quality indexes in the CyberKnife beam.


Assuntos
Radiometria/métodos , Radiometria/normas , Radiocirurgia/instrumentação , Radiocirurgia/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Algoritmos , Simulação por Computador , Humanos , Modelos Biológicos , Método de Monte Carlo , Radiocirurgia/métodos , Valores de Referência , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...